
DORA Metrics and Beyond
Continuously Monitor and Optimize
DevOps Performance

Challenges with Monitoring DevOps DORA Metrics

How to Monitor DORA Metrics?

Continuous Improvement – Beyond DORA Metrics

Mean Lead Time for Changes

Change Failure Rate

Mean Time to Restore (MTTR)

Operational Performance – Reliability

Deployment Frequency

What are DORA Metrics?

Introduction

Table of Contents

Introduction
Today, any organization developing software is seeking higher agility,
efficiency, stability, and reliability in its operations. Teams need continuous
improvements in software development practices and require accurate
data and insights for monitoring the health and performance of their
software development practices.

However, for a long time, organizations lacked a clear direction for
measuring software development. Initially, teams attempted to measure the
lines of code to assess developer productivity. Metrics related to developer
productivity, such as function points, lines of debugged code, number of
command-line arguments, etc., propped up. However, people soon realized
that such metrics offered little help. For instance, tracking the lines of code
improved performance on the metric but also led to a dramatic fall in the
quality of the code. Similarly, tracking the number of bug fixes forced the
teams to log every minor and trivial bug creating a significant slowdown in
the shipping of code. Often, older, trivial bugs with no major impact took
precedence over urgent, hard-to-fix bugs, as teams wanted to score high
on their bug fixes and reduce the average age of open issues.

This is when DORA (DevOps Research and Assessment) developed its
research program. DORA has been publishing annual reports for the last
eight years with inputs from software development professionals, making
it the longest-running academic research of its kind. The research uses
behavioral science to identify better ways to develop and deliver software.
DORA’s metrics are now seen as an industry standard for measuring
DevOps success and also for benchmarking. In this guide, we will explore
these metrics and understand how to use them to improve software
development. We will also explore some additional metrics and evolving
practices to improve DevOps performance.

DORA surveys thousands (to be precise, 33000 in its 2022 report) of DevOps engineers

and leaders every year, evaluating their performance over the four key metrics that are

now considered the holy grail for measuring the success of software development. DORA

classifies the participating organizations into four distinct categories based on the survey

responses as elite performers, high performers, medium performers, and low performers.

Any organization tracking these metrics can compare its current state to its peers, identify

areas for improvement, and take steps to become an elite performer. We have given a brief

description of the metrics below:

What are DORA Metrics?

The mean lead time for changes is the average time code changes take
to progress from the commit stage to production. While the definition is
straightforward, organizations often need help to track this metric as they have to
keep track of multiple tools. Any deviation from the normal or an increasing lead
time can indicate potential issues with the pipeline and would require deeper root
cause analysis. Teams should be able to identify which tasks (stories, bugs,
sub-tasks, etc.) are taking a longer time and drill down to resolve bottlenecks.

The lead time is a direct indicator of
an organization’s CI/CD efficiency.
It indicates how quickly a team
can deliver software or meet end
users’ requirements. Shorter lead
times means teams are able to
deploy faster, with faster feedback
and quicker course correction. For
reference, high-performing teams
or elite performers in DORA’s survey

report the mean lead times between one day and a week and often measure it in
hours. Longer lead times may indicate bottlenecks in the pipeline.

Why is the mean lead time for changes metric important?

Mean Lead Time for Changes

Deployment Frequency

Deployment frequency is the number of times a team deploys a code into the
production environment over a period. Most high-performing teams can deploy
multiple times in a day, on demand. One should note that deployment usually means
releasing the changes into production, and it’s different from a delivery, which is
releasing the changes to a staging environment. The distinction is crucial as, many
times, code changes remain stuck in the staging environment due to a lack of a
release window or business go-ahead. In such cases, caution is required to view
Deployment Frequency as a productivity indicator.

A higher deploymentfrequency 	

indicates higher process efficiency.

It means that the work items are

moving through the pipeline

smoothly. By monitoring historical 	

trends, teams can detect any

potential issues whenever there is a

sharp fall from the normal. Tracking

the average build duration along

with deployment frequency can provide a better picture and help in finding

bottlenecks.

Why is the deployment frequency metric important?

How to increase the deployment frequency??
Again, higher automation at various stages of CI/CD can help teams improve
their deployment frequency. It requires a higher integration across CI/CD tools,
automated testing, and continuous compliance and governance for quicker release
go/no-go decisions.

How to reduce the mean lead time for changes?
Teams can reduce their mean lead time for changes by following some of the
common development best practices, such as breaking down a project into smaller
tasks or batches and implementing trunk-based development. Manual handoffs
and inefficiencies also lead to longer lead times. Therefore, automated testing and
deployments should be implemented.

Change failure rate helps you track how many times code changes lead to a failure

in the production environment. It is the percentage of code changes requiring

remediation steps, such as rollbacks, patches, or hotfixes in production. Please, note

that any issues detected and resolved before reaching production aren’t included in

measuring the change failure rate.

A higher change failure rate not
only indicates that the team is
spending more time resolving
bugs instead of developing new
features, but it also means that the
application is failing more often
and leading to a poor
end-user experience. That’s why
teams need to keep track of this
metric and keep it lower. For

reference, high-performing teams have a change failure rate of below 15%.

Why is the change failure rate metric important?

How to reduce the change failure rate?
Teams need to track their test automation using metrics such as test pass rate, test
code coverage, and more. They might have to drill down to find potential issues
with their testing and code review processes. Establishing quality gates can also
help you ensure that only secure, compliant, and high-quality code reaches
production.

Change Failure Rate

MTTR is a direct indicator of
resiliency and tracking the MTTR
metric can help teams improve their
incident detection and response
mechanisms. It can help teams
reduce their downtimes and ensure
a better experience for end-users.
High-performing teams report an
MTTR of less than a day and often
resolve issues within a few hours.

Why is the MTTR metric important?

How to reduce MTTR?
Teams must continuously monitor their system health and improve alert and
incident response playbooks with increased automation and integration. In modern
hybrid and multi-cloud environments, there are hundreds of alerts and issues to
resolve, and teams can get overburdened. As a result, teams need better context,
prioritization, and traceability to resolve issues quickly.

The mean time to restore is the average time a team takes to restore service or recover

from a system failure. While organizations can track this metric using their service desk

or ticketing systems, they need integration across other tools for root cause analysis

and troubleshooting. For instance, it can be helpful to track application resource

consumption, crash trends, and hosts along with MTTR to draw its correlation with

potential issues in RAM and CPU allocation.

Mean Time to Restore (MTTR)

Implementing SRE best practices can help organizations gradually improve their
reliability. It involves end-to-end tracking of error budgets, service level objectives
(SLOs), errors, availability, latency, and more. A major goal of SRE practices
is to reduce toil, which can be achieved with increased automation across
toolchains. Moreover, teams need to accept failures and conduct routine incident
postmortems to build more reliable systems.

How to improve reliability?

It is seen that even with higher delivery performance, organizations can face
challenges in meeting end-users’ reliability expectations due to gaps in their
operations. While organizations with mature Site Reliability Engineering (SRE)
practices are less likely to face such challenges, DORA suggests that it takes time
for organizations to achieve their reliability targets. Organizations need to set up
clear reliability goals and metrics to make continuous improvements in operational
performance.

Why is the reliability metric important?

Recently, DORA added reliability as
the fifth metric to its assessments
representing operational
performance. The metric helps
you measure the success of
your operational practices. It is
a function of availability, latency,
performance, and scalability and can
help teams continuously improve
their applications to meet end-user

expectations. According, to DORA, a higher focus on operational performance
can help teams reduce burnout and achieve better outcomes.

Operational Performance – Reliability

Challenges with Monitoring DevOps DORA
Metrics
While DORA Metrics sound simple in theory, organizations often face significant roadblocks

in the initial stages of implementation. Even for those who have implemented the metrics,

it is not easy to drill down and across to identify the root cause of issues or find actionable

intelligence for optimization and improvements. Organizations often fail to act on these

metrics or are uncertain about the next steps to improve performance.

It is also important to note here that teams shouldn’t get blinded by these metrics. As

Goodhart’s Law states, “When a measure becomes a target, it ceases to be a good measure.”

Teams should understand that though the DORA metrics are crucial for benchmarking, they

shouldn’t become the goal. Instead of focusing on individual metrics, teams should prioritize

adherence to best practices, increased automation, and observability to achieve better

outcomes.

Organizations need to
collect data from
multiple tools, such
as those for project
management, source
code management, CI/CD,
security scanning, issue
tracking, ticketing, and
more, to monitor DORA
metrics. Teams not only
need to centralize this data
but also need to transform
it into consistent,
calculable units, which is a
complex task.

Disparate Toolchain

While some open-source
project can help teams
implement the metrics and
dashboards, their
monitoring scope is
restricted. Teams need
to spend significant time
and effort in developing
solutions that can help
them act on these metrics,
correlate data across tools,
and gather quick insights
for troubleshooting.

Data Analysis

Lack of automation is
another significant
challenge that restricts
an organization’s ability to
monitor these
metrics accurately. It is
possible to manually
collect data for certain
metrics like MTTR or
Deployment Frequency,
but it becomes difficult
with metrics like Lead
Time, which require data
analysis from multiple
tools.

Automation

As discussed above, organizations can choose open-source or commercial tools

to track DORA metrics. Google’s Four Keys open-source project can offer a good

start to organizations if they have projects in GitHub or GitLab. It automatically

sets up a data ingestion pipeline, collecting data from GitHub or Gitlab repos

through Google Cloud and Google Data Studio. While it is useful for tracking

the DORA metrics, there are obvious restrictions to the type of dashboards and

metrics available in the project. It might require significant configuration to adapt

the dashboard for your organization’s toolchain or get expand monitoring to

optimization and troubleshooting.

How to Monitor DORA Metrics?

https://github.com/GoogleCloudPlatform/fourkeys

Gathr offers an out-of-the-box DORA Metrics solution, which can also be customized to

meet your unique needs. For example, an organization developing hardware products

might measure deployment frequency differently from someone developing SaaS

products. In such cases, Gathr offers increased flexibility to customize metric definitions

and get end-to-end visibility into DevOps health and performance.

One Size Doesn’t Fit All

You can drill down to each metric; for instance, when you monitor the lead time for chang-
es, you don’t only need the historical trends but would also like to see its correlation with the
amount of work that the teams are handling and capture the work distribution by its type (bug,
story, sub-task, etc.). Such breakdowns are useful if you want to monitor and analyze what kind
of work is taking up most of the team’s time and get issue details. It is possible to trace the issue
details to Jira with a click or add a comment directly from Gathr. If you identify a large amount of
work on hold, it might require additional investigations. Gathr can help you in such
investigations to understand cross-team dependencies and bottlenecks.

Drill Down & Across �DORA Metrics

Similarly, you can drill down to the deployment frequency metric. Gathr also tracks

the average speed of deployments and average build duration, as these metrics also

impact the deployment frequency. The view helps you observe the correlation between

deployment trends and build failures. Again, Gathr offers increased flexibility to configure

what you need to monitor. For instance, in Jenkins, many times, there are multiple jobs

running concurrently, handling different builds and deployments. With Gathr, teams can

select the relevant jobs and monitor only them for their work efficiency tracking.

�The view helps you observe the correlation between deployment trends and build

failures. Again, Gathr offers increased flexibility to configure what you need to monitor.

For instance, in Jenkins, many times, there are multiple jobs running concurrently,

handling different builds and deployments. With Gathr, teams can select the relevant

jobs and monitor only them for their work efficiency tracking.

For monitoring the change failure rate, Gathr again offers additional metrics as they offer

better context; these are security test pass rate and average test code coverage. The

view helps you easily correlate the change failure trends with the code changes (average

lines of code added/deleted). You can also get a work breakdown by feature type and

component.

Moreover, it is possible to drill down to metrics, such as code coverage, to identify poten-

tial issues with code reviews and change management.�

Get Better Context �into Quality

You can also configure how you monitor the MTTR metric, adding the details of hosts and
resource consumption to understand what’s leading to application crashes. Gathr allows
you to define your custom metrics using Excel-like formulas and expand your monitoring
scope

Add Custom Metrics to �Gauge Application
�Performance

The solution simplifies data collection from different tools and doesn’t require the creation
of any data warehouses. It uses smart bi-directional connectors that allow you to collect
data from specific instances of your tool within a few simple clicks without requiring any
elaborate configuration or coding. This also gives you increased flexibility to onboard new
tools at any time to accommodate changes in your toolchain or expand the monitoring
scope.

Onboard Your Tools �in Minutes

Continuous Improvement – Beyond DORA
Metrics

While DORA metrics help organizations quickly assess the level of performance

needed to achieve desired business objectives, they can tell only so much .

Organizations need a more holistic approach to improve different aspects of

software development, including security and cloud operations; DORA has also

emphasized these aspects in its recent reports.

Software supply chain attacks are now identified as a major risk, as highlighted by

the recent SolarWinds exploits, which impacted businesses across all industries.

Since the attack, enterprises have become more cautious of the risks in their

software development processes, which can allow an easy approach for threat

actors to introduce vulnerable code or malware that bypasses network defenders,

hiding behind trusted software updates. Security initiatives, such as Supply Chain

Levels for Software Artifacts (SLSA) and the NIST Secure Software Development

Framework (SSDF) can help organizations better prepare against such attacks.

While these frameworks can significantly boost security, there are still gaps in their

adoption. Despite awareness, only 18% of the respondents in DORA’s survey could

confidently claim that the software security protocols like SSDF are seamlessly built

into their development process.

It is also seen that organizations fail to implement simple security practices that

can prevent such attacks to a great extent. For instance, security scanning as part

of CI/CD is now a well-accepted practice, but it’s not without its issues. Many times,

the scans are performed much later in the process, and developers aren’t able to

recognize if they are working on a dependency with known vulnerabilities. Similarly,

they have to wait for hours to know if their changes have resolved a security

issue due to long CI cycles and the inability to run the scans locally. Gathr offers

increased flexibility to integrate security tools in CI/CD and improve security posture

with continuous compliance and observability.

Software Supply Chain Security

https://gathr.one/usecase/continuous-compliance/

Cloud and DevOps are becoming increasingly interdependent. The advent of

practices like Infrastructure as Code has boosted cloud deployments, which are now

largely driven by DevOps teams. However, executives have no clear visibility into the

efficiency of their infra as code pipelines. Many times, configuration scripts lead to

suboptimal resource provisioning. Organizations need a way to implement DORA

metrics for monitoring their infra as code pipelines. Gathr addresses this challenge

with its out-of-the-box app for IAC monitoring. The app offers an easy approach

to adopting DORA metrics for monitoring the IAC pipelines with metrics such as

success/failure rates, top errors, failed changes per week, end-to-end time for infra

provisioning, and more.

The usage of multi and hybrid clouds has registered high double-digit growths in

recent years. Businesses invest in multi-cloud setups for various reasons, including

increased availability, the option to leverage the unique benefits of each provider,

trust or preference, disaster recovery, regulatory compliance, and more. However,

managing and optimizing multi-cloud setups is a complex challenge. Enterprises

waste around 30% of the cloud budgets as per their own estimates. Gathr also

solves this challenge with its app for multi-cloud cost management. It can offer you

quick insights with cloud cost breakdown by region, account, team, services, tags,

and more. The app helps you reduce multi-cloud wastage by analyzing spending

against budgets and forecasting costs and usage.

Cloud Operations

https://www.klera.io/use-case/infra-as-code-monitoring/
https://gathr.one/usecase/cloud-cost-optimization/

www.gathr.one

Data to outcomes,
10x faster.

No-code/ low-code for data at scale, at rest or in motion

Built-in ML to augment, automate and accelerate every step

Drag and drop UI, 300+ connectors, 100+ pre-built apps

Open, extensible, cloud-native and interoperable

Collaborative workspaces for Data, ML, Ops & Business users

Free 14-day trial

Machine Learning Business Process AutomationData Integration More…FinOpsDevOps

Gathr helps teams develop and operate software with increased visibility and control
over data. Please visit our DevOps and Cloud Operations pages to explore an
incremental approach for end-to-end observability and workflow automation.

Gathr makes it possible to expand the scope of monitoring, move beyond DORA

metrics, and create a holistic solution that improves strategic and day-to-day

operational decision-making. Gathr’s DevOps 360 is purpose- built for such

requirements; it combines data, insights, and actions across your infrastructure,

application, platform, end-user data, builds and deployments, incidents, and

more. With this solution, teams can gauge their application performance trends

and make provisioning decisions to maximize the cloud ROI. At the same time,

engineering teams can make informed decisions to improve different features

and deliver a better end–user experience. You can learn more about

DevOps 360 here.

Transition from Monitoring to Optimization

https://twitter.com/gathr_one
https://www.linkedin.com/company/gathr-one/
https://www.youtube.com/channel/UCyxkHSOkME_VXXHzbWle33Q
http://www.gathr.one
http://www.gathr.one
https://www.gathr.one/data-to-outcomes-10x-faster/
https://app.gathr.one/
https://www.gathr.one/schedule-a-demo/
https://gathr.one/usecase/devops-360
https://gathr.one/usecase/cloud-cost-optimization/
https://gathr.one/usecase/devops-360

	What are DORA Metrics?
	Challenges with Monitoring DevOps DORA Metrics
	How to Monitor DORA Metrics?
	Continuous Improvement - Beyond DORA Metrics
	What are DORA Metrics?

	Button 5:
	Button 7:
	Button 4:
	Button 6:
	Button 60:
	Button 61:
	Button 62:
	Button 63:
	Button 64:
	Button 65:
	Button 66:
	Button 67:
	Button 68:
	Button 69:
	Button 70:
	Button 71:
	Button 72:
	Button 73:
	Button 74:
	Button 75:
	Button 76:
	Button 77:
	Button 78:
	Button 79:
	Button 80:
	Button 81:
	Button 82:
	Button 83:
	Button 84:
	Button 85:
	Button 86:
	Button 87:
	Button 88:
	Button 89:
	Button 90:
	Button 91:
	Button 97:

